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Abstract 

Any decision making process that relies on a probabilistic forecast of future events necessarily 

requires a calibrated forecast. This paper proposes new methods for empirically assessing 

forecast calibration in a multivariate setting where the probabilistic forecast is given by an 

ensemble of equally probable forecast scenarios. Multivariate properties are mapped to a single 

dimension through a pre-rank function and the calibration is subsequently assessed visually 

through a histogram of the ranks of the observation’s pre-ranks. Average ranking assigns a 

pre-rank based on the average univariate rank while band depth ranking employs the concept 

of functional band depth where the centrality of the observation within the forecast ensemble 

is assessed. Several simulation examples and a case study of temperature forecast trajectories 

at Berlin Tegel Airport in Germany demonstrate that both multivariate ranking methods can 

successfully detect various sources of miscalibration and scale effciently to high dimensional 

settings. Supplemental material in form of computer code is available online. 
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19 1 Introduction 

Calibration, the statistical compatibility between a probabilistic forecast and the realized obser-

vation, is a fundamental property of any skillful forecast. Formally, we say that the forecast is 

calibrated if, over the long run, events assigned a given probability are realized with the same 

empirical frequency. Calibration is thus a critical requirement for optimal decision making and 

any decision aiding technique that relies on the forecast (Lichtenstein et al., 1977; Gneiting et al., 

2007). 

In the case of a univariate probabilistic forecast given by a continuous predictive distribution, 

Dawid (1984) proposes the use of the probability integral transform (PIT) for calibration assess-

ment. That is, if F is the cumulative distribution function (CDF) of a calibrated probabilistic 

forecast for the observation y, it holds that F (y) ∼ U([0, 1]). A randomized version of the PIT that 

applies to partly, or fully, discrete distributions is discussed in Czado et al. (2009). For an ensemble 

of deterministic forecasts that approximate the predictive distribution, an equivalent tool is the rank 

of the observation y in the forecast ensemble x1, . . . , xm−1 (Anderson, 1996; Hamill and Colucci, 

1997). The calibration of a large number of forecast cases may then be assessed empirically by 

plotting the histogram of the resulting PIT values or verifcation ranks (Gneiting et al., 2007). If 

the forecasts lack calibration, the shape of the PIT or the verifcation rank histogram may reveal 

the nature of the misspecifcation and thus provide a useful guidance to the improvement of the 

forecasting method. For instance, a ∪-shaped histogram is an indication of underdispersion while 

a ∩-shape suggests overdispersion. 

To assess the calibration of multivariate ensemble forecasts, Gneiting et al. (2008) propose 

a general two-step framework. In the frst step, the observation and the ensemble members are 

assigned univariate pre-ranks. The rank of the observation is then given by the rank of its pre-

rank. A multivariate calibration technique based on minimum spanning trees proposed by Smith 

and Hansen (2004) and Wilks (2004) seamlessly falls within this framework. Alternatively, Gneit-

ing et al. (2008) propose a multivariate rank structure equal to that of the empirical copula. A 

recent extension that applies to full distributions is given in Ziegel and Gneiting (2013). While 
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46 the multivariate rank histogram has been shown to work well for low-dimensional forecasts, see 

e.g. Schuhen et al. (2012) and Moller ¨ et al. (2013), the multivariate ordering in the frst step 

seems to lack power in higher dimensions (Pinson and Girard, 2012). Alternative methods for 

high-dimensional calibration assessment have thus been called for (Pinson, 2013; Schefzik et al., 

2013). 

We propose two pre-ranking methods that complement the techniques of Gneiting et al. (2008), 

Smith and Hansen (2004) and Wilks (2004). The new methods are based on the concept of 

band depth for functional data introduced by Lopez-Pintado ´ and Romo (2009) which relates to 

the graphical representation of the functional data curves. That is, continuous or discrete curves 

are given a center-outward ordering according to the centrality of a curve within the collection 

of sample curves. Sun and Genton (2011, 2012) apply this concept to develop a box plot for the 

visualization and outlier-detection of functional data. Viewing a discrete curve of length d as a 

point in d-dimensional space, we defne a pre-ranking method based on the band depth concept of 

Lopez-Pintado ´ and Romo (2009). In the discrete case, the band depth essentially corresponds to 

the average centrality of the d points. As a second alternative, we thus also consider a pre-rank 

given by the average of the univariate ranks. 

The remainder of the paper is organized as follows. In Section 2, we review the concept 

of band depth for discrete data and defne the two multivariate ranking methods. Section 3 and 

4 provide the results of simulation studies where we investigate the infuence of dimensionality 

and correlation, respectively, on the band depth ranks, the average ranks and the two previously 

proposed techniques. A further comparison of the four techniques is provided in Section 4, where 

we assess the calibration of temporal trajectories of temperature forecasts over Germany. The 

paper then ends with a discussion in Section 5. 
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69 2 Ranking multivariate data 

Let S = {x1, . . . xm} denote a set of points in Rd or a d-dimensional subset thereof, with xi = 

(xi1, . . . , xid). Here, we can think of S as comprising an ensemble forecast with m − 1 ensemble 

members and the corresponding observation y = xm. Following the general set-up of Gneiting 

et al. (2008), the rank of the observation in S is calculated in two steps, 

(i) apply a pre-rank function ρS : Rd → R+ to calculate the pre-rank, ρS (x), of every x ∈ S; 

(ii) set the rank of the observation xm equal to the rank of ρS (xm) in {ρS (x1), . . . , ρS (xm)} with 

ties resolved at random. 

Under minimum spanning tree ranking, the pre-rank function ρmst 
S (x) is given by the length of the 

minimum spanning tree of the set S \ x (Smith and Hansen, 2004; Wilks, 2004). Here, a spanning 

tree of the set S \ x is a collection of m − 2 edges such that all points in S \ x are used. The 

spanning tree with the smallest length is then the minimum spanning tree (Kruskal, 1956); it may 

e.g. be calculated using the R package vegan (R Core Team, 2013). The multivariate ranking of 

Gneiting et al. (2008), on the other hand, is defned using the pre-rank function 

Xm  
mρS (x) = 1{xi � x}, (1)

i=1 

where 1 denotes the indicator function and xi � x if and only if xik ≤ xk for all k = 1, . . . , d. 

Gneiting et al. (2008) further consider an optional initial step in the ranking procedure in which 

the data is normalized in each component before the ranking. As the pre-rank functions proposed 

below are invariant to such pre-processing, we omit this step here. 

2.1 Band depth rank 

Lopez-Pintado ´ and Romo (2009) introduce a center-outward ordering of curves which they call 

band depth. In the discrete case, it is defned as the proportion of coordinates of x ∈ S inside 
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90 bands defned by subsets of n points from S, 

� �−1 d  
n m 1 X X � 	

bdS (x) = 1 min{x
 i1k, . . . , xi k} ≤ xk (2)

n d n

k=1 1≤i1<...<in≤m � 	
× 1 xk ≤ max{xi1k, . . . , xink} . 

Note that Lopez-Pintado ´ and Romo (2009) refer to this version of the defnition as modifed 

band depth, in reference to the corresponding defnition for continuous curves. It holds that 

0 ≤ bdn
S (x) ≤ 1 for all x ∈ S and it gets closer to 1 the deeper, or more central, the point x 

is in the set S. Previous studies note that the resulting ordering of the elements in S is robust to 

changes in the value of n and we thus only consider the case n = 2 which is equal to the simplical 

depth of Liu (1990) and computationally very effcient (Lopez-Pintado ´ and Romo, 2009; Sun et al., 

2013). 

From (2), we obtain the band depth pre-rank function 

Xd 
1 X � 	bd ρS (x) = 1 min{xi1k, xi2k} ≤ x
 k ≤ max{xi1k, xi2k}d
k=1 1≤i1<i2≤m 

d
1 Xh � � �   �Xm i

= rankS (xk) m − rankS (xk) + rankS (xk) − 1 1{xik = xk} , (3)
d 

k=1 i=1 

P 
where rankS (xk) = m

1{ ≤ }i=1 xik  xk  denotes the rank of the kth coordinate of x in S. If 

xik = xjk with probability 1 for all i, j ∈ {1, . . .m} with i = j and k = 1, . . . , d, the band depth 

pre-rank function in (3) further simplifes to 

d
1 X� �� � bd ρS (x) = m − rankS (xk) rankS (xk) − 1 + (m − 1), (4)
d 

k=1 

see also Sun et al. (2013). 

It is straightforward to see that the band depth rank of an observation y = xm is uniformly 

distributed if x1, . . . , xm are independent and identically distributed, which implies a calibrated 

ensemble forecast. However, the interpretation of the resulting rank histogram is somewhat differ-
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(a) Band depth ranking (b) Average ranking 
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Figure 1: Illustration of (a) band depth, and (b) average pre-ranking for a multivariate temporal trajectory 
with d = 5 time points. The normalized pre-ranks of each curve are given on the left and the resulting ranks 
on the right. The four ensemble forecast curves are indicated in gray and the observation curve in black. 
The numbers next to each point of the observation curve indicate the univariate pre-ranks. 

106 ent than that of the classical univariate verifcation rank histogram. As the example in Figure 1(a) 

shows, the band depth pre-rank assesses the centrality of the elements in S, with the most cen-

tral element(s) attaining the highest rank(s) and the most outlying element(s) attaining the lowest 

rank(s). A skew histogram with too many high ranks is thus an indication of an overdispersive 

ensemble while too many low ranks can result from either an underdispersive or biased ensemble. 

As demonstrated in the simulation study in Section 4, a lack of correlation in the ensemble will 

result in a ∪-shaped histogram while an ensemble with too high correlations produces a ∩-shaped 

histogram. 
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114 2.2 Average rank 

The average rank is simply given by the average over the univariate ranks, 

Xd

a 1 
ρS (x) = rankS (xk). (5)

d 
k=1 

An illustration of the average pre-ranking is given in Figure 1. It follows directly from (5) that 

the resulting rank of the observation xm in S is uniform on {1, . . . ,m} if the elements of S are 

independent and identically distributed. The average rank furthermore reduces to the classical 
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119 univariate rank when d = 1. 

The interpretation of the resulting histogram is similar to that of the univariate verifcation rank 

histogram. That is, if the forecasts are underdispersive the average rank histogram for the observa-

tion is ∪-shaped, an overdispersive ensemble results in a ∩-shaped histogram while a constant bias 

results in a triangular shaped histogram. As discussed in Section 4 under- and overestimation of the 

correlation structure can furthermore result in over- and underdispersive histograms, respectively. 

3 Histogram shape and the effect of dimensionality 
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Figure 2: Band depth rank histograms for observations in d = 3 dimensions that follow independent stan-
dard Gaussian distributions while the 19 ensemble members follow independent Gaussian distributions with 
parameters as indicated. The results are based on 10000 repetitions. 

126 To demonstrate the shape of the histograms subject to over- and underdispersion as well as 

bias, we consider a simple simulation experiment where the observations follow an independent 

standard Gaussian distribution in each dimension. Figure 2 shows band depth rank histograms 

under this model in a low dimensional setting with d = 3 and m = 20. The ensemble forecasts 

are also assumed to follow independent Gaussian distributions with mean µ ∈ {0, 1} and stan-

dard deviation σ ∈ {0.5, 1, 2}. When the forecasts are underdispersive or have a constant bias, 

the observation curve is often among the most outlying curves resulting in too many low ranks. 

Similarly, if the forecasts are overdispersive, the observation curves are too central on average, 

resulting in too many high ranks. Figure 3 shows the average rank histograms for the same setting. 

Here, the interpretation of the average ranks is equivalent to that of the standard univariate rank 
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136 

137 

histogram. The histogram shape clearly indicates overdispersion in the forecast through a ∩-shape, 

underdispersion through a ∪-shape and bias via a skew, triangular shaped histogram. 
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Figure 3: Average rank histograms for observations in d = 3 dimensions that follow independent stan-
dard Gaussian distributions while the 19 ensemble members follow independent Gaussian distributions with 
parameters as indicated. The results are based on 10000 repetitions. 

138 Figure 4 and 5 demonstrate the effect of increasing dimensionality on the four multivariate 

ranking methods discussed in Section 2 subject to under- and overdispersion, respectively. While 

we still assume the ensemble consists of 19 members, the dimensionality of the data is here in-

creased to 5 and 15 dimensions. This setting may seen somewhat extreme in that we attempt to 

represent the multivariate correlation structure in 15 dimensions with only 19 trajectories. How-

ever, this is common e.g. in atmospheric sciences, where due to computational limitations ensem-

bles of similar magnitude are used to represent very high dimensional multivariate distributions. 

The average rank histograms for both examples appear unchanged compared to the low dimen-

sional example in Figure 3 while for the band depth rank, the evidence of miscalibration seem to get 

stronger with higher dimensions. The minimum spanning tree ranking provides a center-outward 

ordering of the curves similar to statistical depth functions (Gneiting et al., 2008; Zuo and Ser-

fing, 2000) and for the examples here, the shape of the minimum spanning tree rank histograms 

is nearly identical to that of the band depth rank histograms. As reported in Pinson and Girard 

(2012), we observe identifability issues with the multivariate ranking of Gneiting et al. (2008) in 

higher dimensions. In 5 dimensions, only the upper half of the ranks indicates miscalibration and 

the multivariate rank histograms appear close to uniform when d = 15 even though the forecasts 

are severely miscalibrated. The reason for this can be seen by considering the example in Fig-
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d 
=

 5

Multivariate Rank

d 
=

 1
5

Average Rank Band Depth Rank Minimum Spanning Tree Rank

Figure 4: Multivariate ranking of observations in dimension d = 5 (top row) and d = 15 (bottom row) that 
follow independent standard Gaussian distributions when the 19 ensemble member forecasts are underdis-
persed following independent zero-mean Gaussian distributions with standard deviation of 0.5. 

d 
=
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Multivariate Rank

d 
=

 1
5

Average Rank Band Depth Rank Minimum Spanning Tree Rank

Figure 5: Multivariate ranking of observations in dimension d = 5 (top row) and d = 15 (bottom row) that 
follow independent standard Gaussian distributions when the 19 ensemble member forecasts are overdis-
persed following independent zero-mean Gaussian distributions with standard deviation of 2. 

155 ure 1, where, due to crossing of the curves, four out of the fve curves would obtain a multivariate 

pre-rank of 1. 

Additional simulation studies show that miscalibration is generally easier to detect in larger en-

sembles than in small ensembles (results not shown). While these results holds across the different 

pre-ranking techniques, it appears that the curse of dimensionality observed for the multivariate 

ranking in Figures 4 and 5 cannot be avoided by increasing the size of the forecast ensemble. 

Computer code to recreate Figures 2-5 using R (R Core Team, 2013) is available in the online 

supplementary material. 
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163 4 Assessing deviations in the correlation structure 

An appropriate modeling of the correlation between the different components is an important as-

pect of multivariate predictions. It is not entirely obvious from their defnition why the band depth 

and the average rankings are sensitive to misspecifcation of the correlation structure. This can be 

demonstrated by comparing the variances of the pre-ranks under different dependence strengths. 

First, consider the extreme case where the observations are fully dependent (i.e. identical) and the 

forecasts are independent across the different components. Assuming, as before, that the different 

curves are pairwise independent, the rank of the ith random curve Xi is uniformly distributed on 

{1, . . . ,m} for each component k = 1, . . . , d. Under the pre-rank functions in (4) and (5) it follows 

that � � m + 1 � � m2 + 3m −
E a  4 

 ρS (Xi) = , E bdρS (Xi) = , i = 1, . . . , m. (6)
2 6 

For simplicity, we assume that the number m − 1 of forecast curves is high enough, so that 

we can neglect the different dependence structure of the observation curve when calculating the 

variance of the pre-rank function for the forecast curves. For the average ranking we obtain 

� � m2 − 1 
Var a ρS (Xi) ≈ , i = 1, . . . ,m − 1, (7)

12d � � m2 − −a  1 (m  1)2(d − 1)
Var ρS (Xi) = + , i = m, (8)

12d 12d 

while the band depth ranking results in 

� � − 2 
bd (m + 1)(m  1)(7m + 8m + 12) 

Var ρS (Xi) ≈ , i = 1, . . . ,m − 1, (9)
60d � � bd (m + 1)(m − 1)(7m2 + 8m + 12) 

Var ρS (Xi) = 
60d 

(m4 − 6m3 + 13m2 − 12m + 4)(d − 1)
+ , i = m. (10)

180d 

Details of the derivations are given in the appendix. 

That is, the variance of the pre-rank for the observation curve (which was assumed constant 
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175 over all components) is much larger than that of the forecasts curves (which were assumed inde-

pendent across all components) for both pre-rank functions. It is thus more likely that we observe a 

very low or a very high pre-rank for the observation than for each ensemble member forecast which 

again leads to proportionally larger number of low and high ranks for the observation resulting in 

a ∪-shaped histogram. 

4.1 Gaussian autoregressive processes 

We now consider an example where y ∈ Rd is a temporal trajectory of a real valued variable 

observed at d equidistant time points t = 1, . . . , d. That is, the observation is a realization of a 

zero-mean Gaussian AR(1) (autoregressive) process Y with 

Cov(Yi, Yj ) = exp(−|i − j|/τ), τ > 0. (11) 

The process Y thus has standard Gaussian marginal distributions while the parameter τ controls 

how fast correlations decay with time lag. We set τ = 3 for Y and consider ensemble forecasts 

of the same type but with a different parameter value τ . It follows from this construction that a 

univariate calibration test at a fxed time point would not detect any miscalibration in the forecasts. 
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Multivariate Rank

τ 
=

 4

Average Rank Band Depth Rank Minimum Spanning Tree Rank

Figure 6: Simulation study to compare the sensitivity of the multivariate rank histogram, the band depth rank 
histogram and the average rank histogram to misspecifcation of the dependence structure. The observations 
follow an AR(1) process at time t = 1, . . . , 5 with the dependence structure given in (11) for τ = 3 while 
the ensemble forecasts follow the same model with τ = 2 (top row) and τ = 4 (bottom row). The results 
are based on 10000 repetitions with 19 ensemble members in each iteration. 
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188 Rank histograms for d = 5 and m = 20 where the forecast model has either τ = 2 or τ = 4 

are shown in Figure 6. While all four calibration assessment methods are able to detect the mis-

calibration, the multivariate rank histogram suffers from identifability issues with many low and 

identical pre-ranks resulting in a fattening out of the left side of the histograms. The band depth 

and the average rankings, on the other hand, seem quite sensitive to the model misspecifcation 

resulting in ∪-shape histograms when the correlations decay too fast in the forecasts and ∩-shaped 

histograms in the opposite situation. Here, the minimum spanning tree histogram gives the clearest 

indication of miscalibration. 

Tables 1 and 2 demonstrate the effect of dimensionality and ensemble size on the average and 

band depth rank histograms in Figure 6. That is, we report the mean rank and the rank variance for 

both the observation and a randomly selected ensemble member under the two ranking methods 

when the observation follows the model in (11) with τ = 3 while τ = 2 for the forecasts. This 

example is similar to the example at the beginning of this section which can be considered the 

extreme case with τ = ∞ for the observation and τ = 0 for the forecast. 

In the current example, dimensionality has only a minimal effect on the results while the size of 

the ensemble substantially affects the resulting values due to the varying number of possible ranks. 

As the serial dependence of the forecasts is too weak, the forecast ranks concentrate more strongly 

around the mean than the obseration ranks resulting in ∪-shaped histograms as those displayed in 

the top row of Figure 6. This difference in the rank variance appears to be somewhat stronger for 

the average ranking than for the band depth ranking. For the band depth ranking, we moreover 

observe a slight shift of the mean rank. This follows from the fact that the distribution of the band 

depth rank, a quadratic function of the univariate ranks, is slightly skewed such that difference in 

the variance of the pre-ranks may cause differences in the mean rank. 

When the forecast model has the parameter value τ = 4 as displayed in the bottom row of 

Figure 6, we observe similar effects of dimensionality and ensemble size as those reported in 

Tables 1 and 2. However, as this example has too strong serial dependence in the forecasts, the 

rank variance of the observations is here lower than that of the forecasts (results not shown). 
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Table 1: Mean ranks over 30000 repetitions for average ranking and band depth ranking under a zero-mean 
Gaussian AR(1) model with the exponential covariance function in (11) with τ = 3 for the observation and 
τ = 2 for the forecasts. 

Average Band depth 

m = 20 m = 100 m = 200 m = 500 m = 20 m = 100 m = 200 m = 500 

Observation 

d 
d 
d 
d 

= 
= 
= 
= 

5 
100 
200 
500 

10.5 
10.6 
10.5 
10.5 

50.4 
50.4 
50.4 
50.7 

100.0 
101.0 
100.2 
100.3 

251.5 
250.8 
251.2 
249.7 

10.7 
10.6 
10.5 
10.5 

51.7 
50.8 
50.9 
50.9 

102.2 
101.7 
101.8 
100.9 

256.8 
253.2 
251.5 
251.4 

Randomly selected ensemble member 

d 
d 
d 
d 

= 
= 
= 
= 

5 
100 
200 
500 

10.5 
10.5 
10.5 
10.5 

50.7 
50.7 
50.3 
50.3 

100.4 
101.3 
100.4 
100.4 

249.5 
250.7 
250.7 
250.6 

10.5 
10.5 
10.5 
10.5 

50.6 
50.2 
50.3 
50.5 

100.6 
100.5 
100.5 
100.4 

248.6 
251.1 
252.3 
251.2 

Table 2: Rank variance over 30000 repetitions for average ranking and band depth ranking under a zero-
mean Gaussian AR(1) model with the exponential covariance function in (11) with τ = 3 for the observation 
and τ = 2 for the forecasts. 

Average Band depth 

m = 20 m = 100 m = 200 m = 500 m = 20 m = 100 m = 200 m = 500 

Observation 

d = 5 37 940 3773 23428 37 946 3749 23690 
d = 100 40 1004 4042 25431 38 989 3982 24604 
d = 200 39 1006 4002 25524 38 984 3949 24747 
d = 500 39 1014 4052 25629 38 992 3965 24891 

Randomly selected ensemble member 

d = 5 33 830 3319 20849 33 835 3341 20891 
d = 100 33 837 3323 20663 33 825 3331 20715 
d = 200 33 828 3316 21008 33 833 3315 20920 
d = 500 33 833 3320 20763 33 835 3336 20825 

13 
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Figure 7: Simulation study to compare the sensitivity of the four multivariate ranking methods to miscali-
bration in the dependence structure. The observations follow the correlation models a), b), or c) (from top 
to bottom) at time t = 1, . . . , 15 while the forecasts follow an AR(1) process with scale parameter τ = 3. 
The results are based on 10000 repetitions with an ensemble of size 19. 

215 4.2 Autoregressive vs. more complex correlation functions 

216 Here, we consider Gaussian processes on t = 1, . . . , d where the observation follows the model in 

(11) with τ = 3 while the components of the observation curve have a more complex correlation 

structure. That is, we consider the correlation models 

� � 
a) Cov(Yi, Yj ) = exp(−|i − j|/4.5) 0.75 + 0.25 cos(π|i − j|/2) 

� �
b) Cov −1 

(Yi, Yj ) = 1 + |i − j|/2.5 

� 	� � 
c) Cov(Yi, Yj ) = 1 |i − j| ≤ 5 1 − |i − j|/5 

Correlation function a) is a damped cosine that oscillates around the exponential model (11) with 

τ = 3. The correlation functions b) and c) differ from this exponential model in that they have 

much stronger correlations at larger time lags, or zero correlations for larger time lags, respectively. 

Figure 7 shows the resulting histograms for d = 15 and m = 20. When the observations 

follow correlation model a), the univariate ranks cancel out by averaging which results in a fat 

average rank histogram, while the minimum spanning tree histogram detects the false correlation 
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228 structure very well and the band depth rank histogram also indicates miscalibration. For the long 

range dependence model the opposite situation occurs in that the average rank histogram gives the 

clearest indication of miscalibration while the minimum spanning tree histogram is almost fat. 

The last model c) with zero correlations beyond lag 5 fnally presents a situation where the 

average rank and band depth rank histograms behave in the opposite way, the former being slightly 

∩-shaped and the latter being slightly ∪-shaped. This suggests that the average rank histogram is 

more strongly affected by correlations at larger lags (which are overpredicted here) while the band 

depth rank histogram and the minimum spanning tree histogram are more sensitive to misspecif-

cations of correlations at short lags (which are underpredicted here). 

R code to recreate all the examples in this and the previous section is available in the online 

supplementary material. 

5 Calibration of temperature forecast trajectories 

We illustrate the use of the multivariate verifcation tools discussed above in the setting of prob-

abilistic weather forecasting, where ensembles of weather predictions for the same location, time 

and weather variable are generated in order to represent forecast uncertainty (Palmer, 2002; Gneit-

ing and Raftery, 2005; Schefzik et al., 2013). Specifcally, we consider ensemble temperature 

forecasts at Berlin Tegel issued by the ensemble prediction system (EPS) of the European center 

for medium-range weather forecasts (ECMWF) with lead times of 6h, 12h, ..., 72h (Molteni et al., 

1996; Leutbecher and Palmer, 2008). The EPS is initialized at 0000 UTC, consists of 50 ensemble 

members, and will be evaluated during the period from October 10, 2010 to December 31, 2012 

using observational data from the local meteorological station as the truth. 

The ECMWF forecasts used here are freely available from the TIGGE repository at http:// 

apps.ecmwf.int/datasets/data/tigge/. The temperature observation data for Berlin 

Tegel and the R code needed to perform the analysis discussed below is provided in the online 

supplementary material. 
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253 The univariate rank histograms (not shown here) suggest that these raw ensemble forecasts 

have a systematic under forecasting bias at Berlin Tegel and are underdispersive at all considered 

lead times. We use a simple post-processing method to remove bias and adjust the ensemble spread 

for each lead time separately. Denoting by x̄ the mean of the 50 ensemble members (this is a vector 

with 12 components, one for each lead time) we obtain a bias-corrected mean µ by ftting a linear 

regression model µi = ai + bix̄ i, separately for each component, to the corresponding observations 

yi. For each forecast day the preceding 50 days are taken as training data so that we always have 

50 forecast-observation pairs to ft the regression model. This is a compromise between fexible 

adaptation to seasonal changes on the one hand and gathering suffcient data to permit stable model 

ftting on the other hand, see e.g. Gneiting et al. (2005) and Raftery et al. (2005). 

To adjust the ensemble spread, we use the “error dressing” approach of Roulston and Smith 

(2003), building a new ensemble by sampling from the errors εij = yij − µij of the bias-corrected 

forecasts on the respective training days j = 1, . . . , 50 for lead time i = 1, . . . , 12. To create 

an ensemble that appropriately represents the prediction uncertainty we additionally infate εij 

to adjust for the uncertainty in the bias correction (Faraway, 2004, Section 3.5). The ensemble 

obtained in this way is unbiased and nearly calibrated for individual lead times, see Figure 8. 

We then consider three different strategies to model dependencies of forecast errors at different 

lead times, 

(i) ignore multivariate dependencies and perform the error dressing separately for each lead 

time; 

(ii) perform the error dressing separately for each lead time but use empirical copula coupling 

(ECC, Schefzik et al., 2013) in a second step to transfer the dependence structure from the 

raw ECMWF ensemble to the error dressing ensemble; 

(iii) draw the errors from a zero-mean multivariate normal distribution with the empirical co-

variance matrix of the forecast errors over all lead times, where the variance is infated as 

suggested above. 
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Lead Time = 6h Lead Time = 12h Lead Time = 18h Lead Time = 24h

Lead Time = 30h Lead Time = 36h Lead Time = 42h Lead Time = 48h

Lead Time = 54h Lead Time = 60h Lead Time = 66h Lead Time = 72h

Figure 8: Univariate rank histogram of the bias-corrected error dressing forecasts for lead times 6h, 12h, ..., 
72h at Berlin Tegel, each of them based on 823 verifcation days. 

279 While all three strategies result in similar marginal distributions, the multivariate calibration 

assessment in Figure 9 reveals substantial differences. When the statistical postprocessing is per-

formed independently for each lead time, the average rank histogram exhibit a ∪-shape indicating 

a lack of correlation between lead times in the forecasts. The band depth rank histogram is skew 

towards the lowest ranks indicating that the forecasts are too outlying on average and both the 

minimum spanning tree and the multivariate rank histograms are skewed towards the higher ranks. 

However, as the average rank histogram is symmetric, we would expect the outlying observation 

curves to have both too low ranks as well as too high ranks on average. We thus observe here 

a fattening out of the lower ranks in the multivariate rank histogram due to degeneracy in the 

pre-ranking; on any given day, at least half the curves are assigned a multivariate pre-rank of 1. 

The ECC multivariate postprocessing of Schefzik et al. (2013) signifcantly improves the cal-

ibration of the independent postprocessing, though the observation curves are still somewhat too 

outlying. For the multivariate normal error sampling, the histograms appear quite close to uniform 

with a minor divergence towards a ∪-shape in both the minimum spanning tree rank histogram 

and the average rank histogram. An alternative forth multivariate postprocessing option is to apply 

univariate normal error models followed by ECC. This option leads to calibration results nearly 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

17 



In
de

pe
nd

en
t

E
C

C

Multivariate Rank

M
ul

tiv
ar

ia
te

 N
or

m
al

Average Rank Band Depth Rank Minimum Spanning Tree Rank

Figure 9: Multivariate rank histograms (left), band depth rank histograms (middle) and average rank his-
tograms (right) of the bias-corrected error dressing forecasts with independent error sampling (top), under 
ECC (middle) and with multivariate normal error sampling (bottom). The results are based on forecasts for 
12 lead times on 823 verifcation days at Berlin Tegel. 

295 identical to the current results for ECC. 

296 6 Discussion 

In this paper, we propose two new methods for assessing the calibration of multivariate forecasts 

where the predictive distribution is represented by a forecast ensemble. Band depth ranking is 

based on the concept of band depth for functional data, originally proposed by Lopez-Pintado ´ and 

Romo (2009) and previously employed to create box plots for functional data (Sun and Genton, 

2011, 2012; Sun et al., 2013). The somewhat simpler alternative, average ranking, employs the av-

erage over the univariate ranks. As demonstrated in several simulated and real data examples, both 

methods seem to correctly identify various sources of miscalibration in the forecast. Furthermore, 

they escape the curse of dimensionality affecting the multivariate ranking of Gneiting et al. (2008) 

as e.g. discussed by Pinson and Girard (2012). The minimum spanning tree ranking of Smith and 

Hansen (2004) and Wilks (2004) can be more sensitive to misspecifcations than the new methods 
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307 proposed here. However, the resulting histograms seem to provide less information on the type of 

misspecifcation. 

The band depth concept of Lopez-Pintado ´ and Romo (2009) is but one of a multitude of statis-

tical depth functions for multivariate data that provide a center-outward ordering of the data (Zuo 

and Serfing, 2000). While we have here chosen the band depth due to its computational effciency 

and interpretability of the resulting histograms, other depth functions might be equally appropriate 

for this purpose. As the band depth ranking assesses the centrality of the observation within the 

forecast ensemble, the sign of a potential bias cannot be learned from the shape of the histogram. 

Average ranking, on the other hand, distinguishes between positive and negative bias and effects 

where the forecasts exhibit a positive bias in a subset of the dimensions and a negative bias in a 

different subset might cancel out. Such effects can, however, easily be detected through univariate 

calibration assessment in each dimension. 

Our examples, in particular the examples in Section 4.2, suggest that there is no single best 

pre-ranking method as all the methods may fail in detecting miscalibration. These methods project 

the multivariate quantity on a different univariate aspect and, in the process, lose information on 

other aspects. Our overall recommendation is thus to study histograms of different type before 

drawing conclusions. Furthermore, multivariate techniques should frst and foremost complement 

univariate methods by effectively detecting features of miscalibration that cannot be found by 

studying the marginal distributions only. Conversely, ensuring marginal calibration in a frst step 

can rule out the possibility of some compensating effects e.g. of marginal variances and correlations 

between different components. 

Multivariate ranks relate to the multi-dimensional Smirnov two sample test proposed by Bickel 

(1969). Formal tests of uniformity can also be applied to the resulting ranks and this has been 

studied by several authors for univariate PIT or rank histograms, see e.g. Gneiting et al. (2007) and 

references therein. However, as dicussed by both Hamill (2001) and Gneiting et al. (2007), the use 

of formal tests is often complicated by the intricate dependence structures between the individual 

forecast cases. This holds, in particular, for partially overlapping forecast trajectories as discussed 
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334 in Section 5 or spatially aggregated forecasts. 

Although calibration is an essential feature of a skillful forecast, a general forecast verifcation 

framework should consider a number of different aspects. Gneiting et al. (2007) state that the 

goal of probabilistic forecasting is to “maximize the sharpness with respect to calibration”. That 

is, given a group of forecasts that all appear close to calibrated, we should choose the forecast 

with the highest information content. For predictive distributions or forecast ensembles, this can 

be attained by choosing the forecast with the smallest spread. More generally, proper scoring 

rules offer a verifcation framework under which various aspects of the forecast can be assessed, 

including calibration and sharpness. A comprehensive review of proper scoring rules is given in 

Gneiting and Raftery (2007). 
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to January 31, 2013 with a temporal resolution of 3 hours. (temp.obs.Rdata) 
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Appendix 

We consider here the special case where the components of the forecast curves are independent 

while the components of the observation curves are fully dependent (i.e. identical). As usual, we 

also assume that all curves are independent. Let Xik be the random variable corresponding to the 

kth component of curve i, f its density and F its cumulative distribution function for k = 1, . . . , d 

and i = 1, . . . ,m.The ranks rank(Xmk) are then also random quantities and can be written as 

Xm  
rank(Xmk) = 1{Xik ≤ Xmk}. 

i=1 

Under the above assumptions, these quantities are uniformly distributed on {1, . . . ,m}, and hence 

have mean m+1 and variance m
2−1 for every k ∈ {1, . . . , d}

2 12 . The relations in (6) then easily follow. 

To establish the expressions for Var(ρbd 
S (Xi)) and Var(ρa 

S (Xi)) for the pre-rank functions in 

(4) and (5), respectively, we proceed as follows. For i = 1, . . . ,m − 1, we assume that 

� � d
1 X � � bdVar  ρS (Xi) ≈ Var (m + 1)rank(X )2ik) − rank(Xik , 
d2 

k=1 

and similar for Var(ρa 
S (Xi)). An application of Faulhaber’s formula, 

Xm m 
m2

3 (m + 1)2 X m(m + 1)(2m + 1)(3m2 
 + 3m −

i 4  1)
= , i = ,

4 30 
i=1 i=1 
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439 then leads to the results in (7) and (9). 

Since Xmk takes the same value (almost surely) for all k, we can write Xmk = Xm∗. By using 

the independence assumptions (between curves on the one hand and components of the forecast 

vectors on the other hand) we obtain for k = k0 

� � Xm Xm � � 
E rank(Xmk)rank(Xmk0 ) = P Xik ≤ Xmk, Xi0k0 ≤ Xmk0 

i=1 i0=1 

mX−1 mX−12(m − 1) � �
= 1 + + P X

 ik ≤ Xm∗, Xi0k0 ≤ Xm∗ 
2

i=1 i0=2 

(m − 1)2 

= m + . 
3 

The last equality uses the independence of Xik, Xi0k0 , and Xm∗ which permits the calculation of 

the joint probability via Fubini, 

Z Z � � ∞ � � 1
2 1 

P Xik ≤ Xm∗, Xi0k0 ≤ Xm∗ = F (y) f(y)dy = y 2dy = . 
−∞ 0 3

This fnally yields 

� � (m − 1)2 (m + 1)2 (m − 1)2 

Cov rank(Xmk), rank(Xmk0 ) = m +  − = , k = k0,
3 4 12 

from which we obtain equation (8). 

The results for the band depth ranking in (10) addtionally require the calculation of 

� � 3 2 

E rank(X )rank(X )2 3m + 4m + 3m + 2 
mk mk0 = ,

12 � � 4 3 2 

E rank(X )2rank(X )2 6m + 9m + 8m + 3m + 4 
mk mk0 = 

30 

which are obtained in a similar manner (but with many more cases). 
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